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Abstract

A tensor generalization of the Monaghan-Gingold artificial viscosity for smoothed particle hydrodynamics (SPH) is

formulated. We also develop a new limiter to restrict the effects of the artificial viscosity to the direction of shock travel,

while maintaining enough of the artificial viscous dissipation to keep the SPH technique stable. We present a series of

test problems comparing the new viscosity formalism with the standard method for fluid flows in two and three dimen-

sions, such as shearing systems undergoing shocks. We also present tests of the conservation and transport of angular

momentum, since total angular momentum conservation is not guaranteed with the new viscosity formalism.

� 2004 Elsevier Inc. All rights reserved.
1. Introduction

Smoothed particle hydrodynamics (SPH) was originally developed by Lucy [6] and Gingold and Mon-

aghan [5] for use in modeling astrophysical phenomena, and has since been successfully applied to study a

wide variety of phenomena. SPH is a meshless method of modeling hydrodynamics, wherein the material is
discretized into a set of nodes or ‘‘particles’’ on which the Lagrangian hydrodynamic equations are solved.

SPHs great strengths are its Lagrangian nature (allowing the resolution to follow the mass), its intrinsic

robustness (SPH is not susceptible to mesh tangling in complex flows), its natural match with the well es-

tablished N body schemes for modeling gravitational interactions, and its simplicity. This last point has

probably been SPH�s major selling point: in its simplest form is literally as simple to implement SPH in

three dimensions as in one. We will not discuss the SPH technique in depth here, but rather refer the reader

to the review articles written by Monaghan [9] and Benz [2].

Although SPH�s simplicity is one of its great strengths, some of the simplifying assumptions which are
typically made in extending SPH to two and three dimensions can compromise the quality of the solution in
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the presence of multi-dimensional fluid flows. In particular, the most popular artificial viscosity employed

in SPH calculations (based on the pioneering work of Monaghan and Gingold [10]) is extended to two and

three dimensions as a scalar viscosity, essentially based on the divergence of the velocity. Like many other

Lagrangian hydrodynamic schemes, SPH uses an artificial viscosity to spread the shock jump conditions

over a few resolution scales, thereby stabilizing the technique in the presence of shocks. Usually a shock
transition is locally a highly directional phenomenon, and it is desirable to have the numerical shock treat-

ment take this local directionality into account and react accordingly. A scalar artificial viscosity does not

possess the information to discriminate directionality though, and reacts to shocks as an isotropic local

pressure increase. A further complication arises in the standard SPH artificial viscosity due to the fact that

it is triggered by shearing flows as well as compressional flows. While there has been some work on patching

up the standard viscosity in the presence of shears (Balsara [1]), this remains a problem.

In this paper we present a new method of extending the one-dimensional artificial viscosity originally

developed by Mongahan and Gingold [10] to two and three dimensions, based on a tensor formalism which
allows the viscosity to adapt to the dimensionality of the system being considered. The paper is organized as

follows: in Section 2 we present the standard SPH evolution equations used in this work; in Section 3 we

briefly summarize the traditional approach to extending the SPH artificial viscosity to higher dimensions; in

Section 4 we present the new formalism for a tensor artificial viscosity; and finally Section 5 presents results

from several test problems with analytic solutions (including a new problem propagating a shock over a

shearing flow), as well as several problems designed to test the angular momentum conservation of the

new tensor viscosity.
2. The SPH evolution equations

Before we begin, a word about notation. In this paper we use the convention that English subscripts de-

note node indices (mi is the mass of node i), while Greek superscripts denote dimensional indices (rai is the
ath component of the position for node i). We use the summation convention for repeated Greek indices:

rai v
a
i ¼ ri � vi. We define ÆFæ as the SPH interpolated value of F: ÆFæi =

P
j(mj/qj)FjWij. Consistent with our

prior work on adaptive smoothed particle hydrodynamics (ASPH, cf. [15]), we fold the SPH smoothing
scale h into our equations by preferring to write expressions in terms of ‘‘normalized’’ coordinates

ga = ra/h. We do not present any results in this paper using ASPH because the improvements we seek in

the form of the artificial viscosity are orthogonal to the resolution improvements addressed by ASPH. Eve-

rything presented in this paper is equally applicable to both SPH and ASPH, and by writing our equations

with this convention both cases are covered.

The SPH discretizations of the Lagrangian conservation laws which we employ are
qi ¼
X
j

mjW ij; ð1Þ

Dvai
Dt

¼ �
X
j

mj
P i

q2
i
þ P j

q2
j

 !
oW ij

oxa
þPij

oW Pij

oxa

" #
; ð2Þ

Dui
Dt

¼
X
j

mj
P i

q2
i
vaij

oW ij

oxa
þPijvaij

oW Pij

oxa

� �
; ð3Þ
where q is the mass density, m is the mass, va is the velocity, P is the pressure, and u is the specific thermal
energy. P is the artificial viscosity (written here appropriately for a scalar viscosity), and has units of P/q2.
Therefore, P is related to the artificial viscous pressure Q by Q = q2P. W is the interpolation kernel; note
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that in these equations we have explicitly separated out the interpolation kernel used with the artificial vis-

cosity as WP. Usually the same interpolation kernel is used throughout these equations, but there is no rea-

son that this need be so. The ij subscripts on Pij, Wij, and WPij
denote that these terms are explicitly

symmetrized for interactions between any pair of nodes i and j, so that Pij = (Pi + Pj)/2 and Wij =

(Wi + Wj)/2. This explicit pair-wise symmetrization of the forces in the momentum equation (2) enforces
the global conservation of both linear and angular momentum.

In addition to the equations evolving the physical state variables, we also evolve the smoothing scale as-

sociated with each node inversely with the mass density, according to
Dhi
Dt

¼ � hi
mqi

X
j

mjv
b
ij
oW ij

oxb
ð4Þ
in m dimensions.

We use two interpolation kernels in this paper. The third order B-spline typically used in SPH (see for

instance [9]) is given by
W 3ðgÞ ¼ Am

1� 3
2
g2 þ 3

4
g3; 0 � g � 1;

1
4
ð2� gÞ3; 1 < g � 2;

0; g > 2;

8><
>: ð5Þ
where Am is a normalization constant defined so that the volume integral �dVW3 = 1 in m dimensions. This

cubic B-spline is only one member of the family of B-spline kernels (see [16] for the general definition), and
another interesting kernel is the fifth order B-spline given by
W 5ðgÞ ¼ Am

11
20
� 1

2
g2 þ 1

4
g4 � 1

12
g5; 0 � g � 1;

17
40
þ 5

8
g� 7

4
g2 þ 5

4
g3 � 3

8
g4 þ 1

24
g5; 1 < g � 2;

81
40
� 27

8
gþ 9

4
g2 � 3

4
g3 þ 1

8
g4 � 1

120
g5; 2 < g � 3;

0; g > 3:

8>>>>>><
>>>>>>:

ð6Þ
The penalty for using W5 is computational expense. Since W5 extends to g = 3 rather than g = 2 like W3,
using W5 means that each SPH node samples more neighbors than are required for the W3 kernel. This

difference can be substantial, particularly in three dimensions where the number of neighbors increases

by roughly (3/2)3, implying a corresponding threefold increase in run time. Nonetheless, we find that in

many problems the quality of the answer improves with the use of the higher order kernel, so in some

of the tests presented in this work (particularly those in which we are examining symmetry in detail) we

use W = W5 for the standard interpolation kernel, while we continue to use WP = W3 since shock interac-

tions in general do not benefit from higher order interpolation. In other cases we make the more standard

choice of W = WP = W3. For each test case we state which kernel choices are made.
3. The standard SPH artificial viscosity

The most commonly used form of artificial viscosity in SPH is based on the pioneering work of Mon-

ghan and Gingold [10], wherein the authors derive a 1D pair-wise node form for the viscosity based on the

bulk and Von Neumann–Richtmyer viscosities
qP ¼ �Clhcs dvxdx þ Cqh
2 dvx

dx

� �2
; dvx

dx < 0;

0 dvx
dx P 0;

(
ð7Þ
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where Cl and Cq are constants, h the smoothing scale, dvx/dx the (one-dimensional) gradient of the velocity,

and cs the sound speed. The pair-wise definition for this viscosity which these authors arrived at is
qiPi ¼
�Clcili þ Cql2

i ; li < 0;

0; li P 0;

�
ð8Þ

li ¼
vijgi

g2i þ �2
; ð9Þ
where vij = vi � vj, gi = (ri � rj)/hi, and �2 is a small constant to prevent division by zero problems. Essentially

li is a pair-wise low order method of estimating dv/dx. The most important factor in this viscosity�s suc-
cessful application in SPH is its pair-wise definition, which ensures the viscosity will react to and damp

individual velocity differences between nodes. A straightforward implementation of Eq. (7) using the
SPH machinery to estimate Ædvx/dxæ is possible, but because the SPH technique enforces smoothness on

scales of order of the smoothing scale, such a viscosity will be insensitive to noise in the velocity on the

scales 6 h and therefore will fail to damp out high frequency signals on such small scales. A shock is es-

sentially an unresolved step function in properties of the system, and as such is an excellent source of signals

at or below the resolution scale. The primary purpose of the artificial viscosity is to smoothly spread out

shocks into resolvable features, and this kind of failure is unacceptable.

As is demonstrated in Monaghan and Gingold [10], one-dimensional SPH simulations using the formal-

ism of Eqs. (8) and (9) perform quite well, capturing shock transitions in �2h length scales and effectively
preventing node interpenetration (where SPH nodes unphysically cross one and other). However, the ques-

tion of how to best extend this formalism to two- and three-dimensional is not clear. Most SPH implemen-

tations simply replace the one-dimensional gradient dvx/dx with the velocity divergence $ Æ v, which is

accomplished by re-expressing l as
li ¼
vaijg

a
i

g2i þ �2
: ð10Þ
This results in a scalar definition for the SPH artificial viscosity, and this form possesses a number of de-

sirable properties: in the case of a simple planar shock it effectively reproduces the one-dimensional results;

it is Galilean invariant; it maintains excellent symmetry properties (spherical problems remain spherical,

etc.); it vanishes for rigid body rotation; when properly symmetrized it preserves linear and angular mo-

mentum to machine precision; it is conceptually simple and easy to code for any number of dimensions.

However, this particular form for the multi-dimensional viscosity also has some serious shortcomings.

Since the viscosity per pair is a scalar, it always acts along the direction defined by the gradient of the in-
terpolation kernel oWij/ox

a. In SPH, this means the force acts along the line connecting the pair of nodes.

However, in multiple dimensions this is not always the appropriate answer: preferably the viscosity should

act in the direction of the shock (or at least the compression). Consider a spherical radial inflow problem,

such as a cloud of gas collapsing due to gravitational instability or the spherical Noh problem. In this case,

there should be a radial shock forming from the point of convergence and moving outward in Lagrangian

coordinates. However, in an SPH simulation of such a flow, nodes which are flowing in along different ra-

dial lines will interact via the artificial viscosity and exert forces which are not aligned with the direction of

convergence. This results in an unphysical heating of the gas during inflow, and distorts the solution. Fur-
thermore, according to Eqs. (8) and (10), P is positive for any pair of nodes for which vaijr

a
ij < 0, i.e., nodes i

and j are approaching one and other. This implies that the viscosity can be triggered by pure shearing flows,

even though for such flows ova/oxa = 0 and ideally there should be no artificial viscosity. This shearing ac-

tivation of the viscosity is a serious problem for many astrophysical situations, since typically gas in rota-

tional support with a gravitational field is undergoing rotational shear. In this situation the artificial
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viscosity will damp the rotationally driven shear, resulting in an unphysical transport of linear and angular

momentum.

In order to deal with the activation of the viscosity in shearing flows, Balsara [1] (also independently de-

veloped in [8]) proposed that the viscosity be multiplied by the correction term
fBi ¼
j r � vh iij

j r � vh iij þ j r � vh iij þ �2ci=hi
; ð11Þ
where ci is the sound, and � is a small number to avoid division by zero problems. As is noted in Balsara [1],

the fB correction term is an imperfect solution to the shearing viscosity problem: it is in fact only correct for

either purely shear or completely shear free flows. In the pure shear case, fB is zero and the viscosity is

turned off. In the shear free case, fB is one and the viscosity is unaffected. However, in any flow with both

shearing and compressional components, fB simply reduces the magnitude of the viscosity. In this situation

the artificial viscosity is still allowed to place an unphysical drag on the shear while simultaneously the com-
pressional activation of the viscosity is suppressed, potentially degrading the effectiveness of the viscosity in

smoothly handling shock conditions. Nonetheless, fB is necessary for any realistic use of the standard ar-

tificial viscosity in multi-dimensional SPH simulations, and we therefore employ it in all the test cases we

present here of the standard viscosity. In order to maintain the pair-wise symmetry of interactions between

nodes, we define the shear corrected symmetric viscosity as Pij = (fBi
Pi + fBj

Pj)/2.
4. A tensor form of the artificial viscosity

The problems with the standard SPH artificial viscosity are due to the fact that for any given pair of

interacting nodes it uses only the relative positions and velocities of those nodes in determining the viscous

force which acts between them. However, in two or three dimensions when a pair of nodes are approaching

one and other at some angle other than head on, there is no way to determine whether that closing repre-

sents a true compression or simply some shearing flow. Worse still, if there is a compression there is no way

to determine the true orientation of that compression, and therefore the direction in which the viscosity

should apply deceleration. The shear correction in Eq. (11) uses information from nodes surrounding i

and j to try and detect shearing flows and moderate the shearing problem, but does not address the orien-

tation problem. In order to provide a framework for specifying the directionality of the viscosity as well as

deal more effectively with shearing flows, we will consider a tensor generalization of the one-dimensional

viscosity: P ! Pab. The viscous acceleration and energy terms in the Lagrangian evolution equations ap-

propriate for a tensor artificial viscosity are
Dva

Dt
¼ �q

oPba

oxb
; ð12Þ

Du
Dt

¼ �qPab ov
b

oxa
: ð13Þ
The SPH discretizations for momentum and energy (Eqs. (2) and (3)) can be rewritten accordingly as
Dvai
Dt

¼ �
X
j

mj
P i

q2
i
þ P j

q2
j

 !
oW ij

oxa
þPba

ij

oW Pij

oxb

" #
; ð14Þ

Dui
Dt

¼
X
j

mj
P i

q2
i
vaij

oW ij

oxa
þPab

ij v
b
ij

oW Pij

oxa

� �
: ð15Þ
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Note that the viscous acceleration term in Eq. (14) is no longer necessarily aligned with the radial vector

connecting an interacting pair of nodes. This is a desirable feature of the formalism since the acceleration

should be applied in the direction of compression; however, this also implies that we have given up the

guarantee of angular momentum conservation since the forces are no longer radial. Proper symmetrization

of the pair-wise forces does ensure total linear momentum conservation, but now we must keep an eye on
the total angular momentum evolution since conservation can no longer be guaranteed.

The form we propose for the artificial viscosity is
1 W

disting
Pab
i ¼ �Clhicir

ba
ij þ Cqh

2
i r

ac
ij r

cb
ij ; ð16Þ
where rab is the gradient of the velocity ova/oxb, modulo the removal of any expansive components. Eq. (16)

is essentially a direct tensor extension of the one-dimensional bulk and Von Neumann–Richtmyer viscos-

ities in Eq. (7). Note that the linear term is an SPH form of the artificial viscosity proposed in Shashkov [3]

for mesh based Lagrangian schemes.

It is important that we use a pair-wise definition for rab
ij , since as discussed in Section 3, it is the sensi-

tivity to individual differences in nodal velocities that makes the standard SPH viscosity so successful. There

is not enough information available from just the relative velocities and positions of a pair of nodes to de-

termine all the components of ova/oxb, but for a given pair of nodes i and j we can view vaji=x
b
ji as a slice

through the full velocity gradient tensor along the line connecting the two nodes (recall that vaji ¼ vaj � vai
and xbji ¼ xbj � xbi ). With this understanding, we use the following prescription to determine rab

ij for a given

node i interacting with a specific neighbor j.

(1) Determine an average background ðova=oxbÞi at node i. There are several possible choices we could use;
Appendix A gives the details of a pair-wise summed definition we use for the examples in this paper.

(2) Find the rotational transformation Rab
r , such that the x 0 axis in this rotated frame is aligned with the raji

vector. 1

(3) In this rotated frame, v0ji
a=jrjij represents a pair-wise definition for the first column of (ova/oxb) 0. We

therefore construct a pair-wise ðova=oxbÞ0ij by replacing the first column of the background

ðova=oxbÞ0i with v0ji
a=jrjij, and then rotate the result back to the lab frame as follows
v0ji
a ¼ Rab

r vbji; ð17Þ

ova

oxb

� �0

i

¼ Rac
r

ovc

oxw

� �
i

Rbw
r ; ð18Þ

ova

oxb

� �0

ij

¼
v0ji

a

jrijj
d1b þ ova

oxb

� �0

i

ð1� d1bÞ; ð19Þ

ova

oxb

� �
ij

¼ Rca
r

ovc

oxw

� �0

ij

Rwb
r ; ð20Þ
where dab is the Kronecker delta function. Eqs. (18) and (20) are the similarity transforms rotating

ðova=oxbÞi and ðova=oxbÞ0ij to/from the rotated frame, respectively, where we have explicitly made use

of the fact that ðRab
r Þ�1 ¼ Rba

r :
e use 0 here to denote quantities in the rotated frame. Also note that the r subscript in Rab
r is not an index, but rather

uishes this rotational transformation.
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(4) In order to construct rab
ij we remove any expansive components from (ova/oxb)ij. This is equivalent to

requiring a convergent flow in one dimension: dvx/dx < 0. We begin by decomposing (ova/o xb)ij into its

symmetric and antisymmetric components Sab
ij and Aab

ij
Sab
ij ¼ 1

2

ova

oxb

� �
ij

þ ovb

oxa

� �
ij

" #
; ð21Þ

Aab
ij ¼ 1

2

ova

oxb

� �
ij

� ovb

oxa

� �
ij

" #
: ð22Þ
The information about any expansion or compression of the fluid volume is contained in the symmetric

component Sab
ij . Identify the rotational transformation Rab

S which diagonalizes Sab
ij
Dab
ij ¼ Rac

S S
cw
ij R

bw
S ; ð23Þ
limit the diagonal elements of Dab
ij to compressional components only
~Dij
aa ¼ minð0:0;Daa

ij Þ; ð24Þ
(note that in Eq. (24) we are not using the summation convention, each component is limited separately).

Finally, reconstruct the expansion free gradient tensor
rab
ij ¼ Rca

S
~Dij

cw
Rwb
S þ Aab

ij : ð25Þ
In order to ensure that the viscous term is always dissipative, we only apply the viscosity if nodes i and j

are approaching one and other ðvaijraij < 0Þ and if the viscous work term in Eq. (15) is positive. In Appendix

C we give the explicit formulas for Rab
r and Rab

S in two and three dimensions. Note that using the prescrip-

tion described here, this viscosity reduces exactly to the standard SPH viscosity given in Eqs. (7)–(9) in one

dimension.

For the moment using the approximation that rab� ova/oxb, it is simple to demonstrate that this viscos-

ity has several desirable properties. For instance, consider a two-dimensional flow field of the form
v ¼
f ðxÞ þ gðyÞ

0

� �
; ð26Þ
so that g(y) represents a purely shearing component of the velocity. Plugging the gradient of this velocity

field into Eqs. (16) and (12), the corresponding viscous acceleration is (neglecting all terms other than the

velocity derivatives)
Dv
Dt

/
f 00 þ 2f 0f 00 þ f 0g00

0

� �
ð27Þ
(where 0 indicates a spatial derivative). Several properties of the tensor viscosity are immediately obvious

from this simple analysis. First, in the presence of a planar shear the tensor viscosity will not generate

any acceleration away from the plane of the shear, unlike the scalar form of the previous section. This sort

of failure is referred to as ‘‘mode conversion’’ in Margolin [7]. This is an important property for systems in

which the angular momentum evolution is significant, because mode conversion is essentially a spurious

local transport of linear and angular momentum (irrespective of the fact that the total momenta are con-
served.) Second, if f(x) = 0 so there is no compressive term, the tensor viscosity automatically goes to zero

despite the presence of the shearing term g(y). If there is a compressional signal and the viscosity is active,

the f 0g00 term in the x acceleration will cause the viscosity to damp the shear by decelerating against it in the
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direction of the shear velocity component. This shear contribution to the acceleration is an error, but none-

theless the tensor viscosity is better behaved in the presence of shears than the standard scalar form, without

the use of an external limiter such as fB. These results are not dependent on the alignment of the shear with

the x direction as we have considered here for simplicity, but are true for planar shear at any angle. It is also

possible to demonstrate analytically that the tensor viscosity will not distort cylindrically or spherically
symmetric flow fields, such as radial inflow or outflow.

4.1. A limiter to restrict overuse of the viscosity

The tensor artificial viscosity gives us the ability to discriminate different compressional signals in con-

structing the viscous acceleration, but we do not always want to have the viscosity active for any compres-

sion. For instance, in the case of homogeneous radial inflow we do not want the viscosity to activate and

heat the system before it shocks at the point of convergence, since such unphysical preheating of the fluid
will distort the results. Ideally we would like to restrict the artificial viscosity to be active only across shocks.

One of the strong signatures of a shock is that the velocity divergence diverges as we approach a shock: ova/

oxa ! �1. Therefore, the gradient of the velocity divergence should point directly away from a shock, and

we can use �$($ Æ v) = �o2vb/(oxaoxb) as a good indicator of the direction toward any local shock. We use

this idea to construct a directional limiter as follows. Measure a local value at node i for o2vb=ðoxaoxbÞi (the
details of how to do this are discussed in Appendix B.) Define a unit vector ŝai
gai �
o2vb

oxc oxbi
; ð28Þ

ŝai ¼
gai

ðgbi gbi Þ
1=2 þ �ci=h

2
i

; ð29Þ
where � is a small number to prevent division by zero errors. We then form a limiter for node i as the dyadic

product of ŝai
f ab
i ¼ ŝai ŝ

b
i : ð30Þ
The limiter fab is used to define the fully symmetrized tensor viscosity as
Pab
ij ¼ 1

2
f ac
i Pcb

i þ f aw
j Pwb

j

� �
: ð31Þ
The symmetrized, limited viscosity of Eq. (31) is the expression we use in the SPH momentum and energy

equations (14) and (15).

Applying the dyadic product of ŝai to Pab
ij is equivalent to taking the dot product of the viscous acceler-

ation and ŝai , and applying the result in the direction of ŝai . Therefore, Eq. (31) ensures that only the com-

ponents of the viscosity that are aligned with $ ($ Æ v) are allowed to be active.
5. Test problems

5.1. Cylindrical and spherical converging Noh problem

The Noh shock tests are a classic and notoriously difficult set of hydrodynamic test problems, following

the self-similar evolution of an infinite strength shock [14]. An initially pressureless fluid is set in uniform

motion converging upon the origin of a planar, cylindrical, or spherical coordinate system. The planar case

consists of two streams of gas colliding at the origin, resulting in a pair of planar shocks propagating back
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up the colliding streams of material. In the cylindrical and spherical cases the fluid is converging radially

upon the origin, resulting in expanding cylindrical and spherical shock fronts, respectively. The tests pre-

sented here use a c = 5/3 gamma-law gas with unit initial mass density and unit radial motion: q0 = 1,

vr0 = �1. For these conditions the shock speed is vs = 1/3, and the post-shock density enhancement is

qs = 4 (planar), qs = 16 (cylindrical), and qs = 64 (spherical).
Fig. 1 presents the results of modeling the cylindrical Noh problem at time t = 0.6 (corresponding to a

shock position of rs = 0.2) with both the standard SPH viscosity (‘‘Scalar Q’’) and the new tensor formal-

ism (‘‘Tensor Q’’). The simulations are performed in the (x P 0, y P 0) two-dimensional quadrant, with

reflecting boundary conditions along the x = 0 and y = 0 lines. We initialize the SPH nodes on concentric

rings with constant mass nodes, arranged so that an initial mass density of q0 = 1 is established out to a

radius of rmax = 1. By establishing the nodes on concentric rings around the origin we can easily track

how well the cylindrical symmetry of the system is maintained, since the nodes on a particular ring should

all remain at the same radius as they move inward and pass through the shock, at which point they stag-
nate. We seed 60 such rings out to rmax = 1 (with a corresponding azimuthal spacing equal to the radial

spacing, resulting in a total of 2799 nodes) and initialize the SPH smoothing scales h such that there are
Fig. 1. Radial profiles of the mass density and pressure in the cylindrical Noh problem compared with the analytic answer. (a) is the

mass density and (b) is the pressure using the standard (scalar) SPH artificial viscosity, while (c) and (d) are the corresponding results

using the tensor viscosity.
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three nodes per h. We therefore effectively only have 20 resolution scales in the radial direction in this prob-

lem, which is why the mass density profiles are somewhat low. We could of course run a much more highly

resolved problem, but in real simulations we typically have to characterize structures with even worse res-

olution than this, so it is interesting to consider how the technique behaves with marginal resolution. Ad-

ditionally, since we are examining the symmetry of this system in detail we use the fifth order B spline for
the interpolation kernel while continuing to use the third order cubic B Spline for the artificial viscosity:

W = W5 and WP = W3. In this and all subsequent tests we set the linear and quadratic coefficients in the

viscosities (Eq. (8) and (16) to Cl = 1 and Cq = 3/4.

In Fig. 1 we plot all of the nodes vs. radius, so that each of the points in these plots are actually the result of

overlapping many SPH nodes at each radius. For instance, each of the 3–4 apparent plotted points in the

shock transition at rs � 0.2 actually consist of roughly 50 overlapping points. It is clear that both the standard

SPH viscosity and the new tensor viscosity do an excellent job of maintaining the symmetry of the problem.

On the downside both of these simulations show the so-called ‘‘wall heating’’ problem near the origin, where
the fluid becomes overheated and stagnates prematurely, resulting in a temperature overshoot and density

undershoot at the origin. This problem is well known, and as Noh [14] points out can be dealt through the

introduction of an artificial heat conduction. We do not consider such remedies here though, and simply tol-

erate the wall heating. In both the density and pressure plots, it is clear that the results with the tensor viscos-

ity do a better job of matching the analytic post shock conditions. The primary reason for this improvement is

the $($ Æ v) limiter described in Section 4.1. In the pre-shock region the fluid is undergoing a homologous,

non-shocking compression due to the convergent nature of the flow. Both the scalar and tensor viscosities

pick up this motion and seek to decelerate the fluid against this apparent azimuthal compression. However,
the limiter detects that the velocity divergence is aligned radially toward the origin and suppresses any accel-

eration components that are not aligned with this radial direction. Since the tensor viscosity does not activate

in the radial direction until the shock is encountered, the viscosity is effectively deactivated in the pre-shock

compression and the gas is not prematurely heated. This is why the tensor viscosity results show a slightly

higher compression of the post-shock material, and calculate the post shock pressure correctly.

The improvements in the post-shock values for the density and pressure in the spherically symmetric Noh

problem (Fig. 2) realized with the tensor viscosity are even more pronounced, though the symmetry suffers

somewhat near the origin. In these simulations we initialize the SPH nodes on a uniform lattice of 40 · 40 ·
40 points in the unit box between (0,0,0) and (1,1,1) and throw away any points with r > 1, leaving a total of

33512 nodes. For efficiency we initialize two particles per smoothing scale, and use the cubic interpolation

kernelW = WP = W3. We place reflecting boundary conditions on the x = 0, y = 0, and z = 0 planes, thereby

allowing us to model one quadrant of a converging sphere of gas. Although the SPH nodes are seeded on a

very different geometry than that of the spherically converging system we are modeling, the tightness of the

radial profiles in Fig. 2 (where we have again plotted all 33512 nodes against radius) indicate both viscosities

are doing an excellent job of maintaining the physical symmetry of the system. The slight broadening of the

tensor viscosity profiles in the post shock region seem to be due to slight inaccuracies in calculating ðova=oxbÞi
and rðr � vÞi. It is clear that the $($ Æ v) limiter is playing an important role in the tensor viscosity results,

preventing the preheating of the infalling gas and allowing the simulation to better match the analytic shock

position and post-shock profiles for the mass density and pressure. The spherical pre-shock compression is

stronger than the cylindrical compression in the previous simulations, which is why the unphysical pre-shock

heating is stronger in the standard scalar viscosity simulation. This error results in the shock being in the

wrong position and the corresponding post shock compression being too low.

Comparison of Figs. 1 and 2 shows that the results with the tensor viscosity for the three-dimensional

spherically symmetric problem are very close to those of the two-dimensional cylindrical problem: the spher-
ical and cylindrical post-shock density and pressure profiles approach the analytic solutions in simliar ways,

and the shock position is accurately captured. This is what we expect of the tensor formalism, since it has the

flexibility to adapt to the dimensionality of the problem. The results using the scalar viscosity suffer with



Fig. 2. Radial profiles of the mass density and pressure in the spherical Noh problem compared with the analytic answer. (a) is the

mass density and (b) is the pressure using the standard (scalar) SPH artificial viscosity, while (c) and (d) are the corresponding results

using the tensor viscosity.
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increasing dimensionality because the scalar formalism only knows about the divergence of the velocity, and

therefore does not have enough information to discriminate any directionality or dimensionality about a

compression. It is also worth pointing out that we would expect that applying the $($ Æ v) limiter to the

standard viscosity will not result in as much improvement as we see when it is used with the tensor viscosity.

The acceleration due to the scalar viscosity is always aligned with the line connecting any pair of interacting

nodes. Therefore, for nodes interacting at some arbitrary angle between 0� and 90� from the radial direction,

the acceleration has some non-zero component in the radial direction and the limiter will not deactivate this
component. Therefore, there would still be some amount of unphysical heating of the pre-shock material

when using the standard scalar viscosity with the $($ Æ v) limiter.

5.2. Shearing planar Noh problem

In this section we examine a very challenging test problem: propagating a shock over a shearing flow. In

this test we set up an initially pressureless two-dimensional gamma law gas with an initial velocity field
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v ¼
v0 cos 2py

�1

� �
; ð32Þ
in a box with periodic boundary conditions in the x direction and a reflecting boundary condition along the

y = 0 line. This system should evolve as the planar Noh problem in the y direction, but now the infinite

strength shock will be propagating over a shearing flow. Ideally we expect the shock front and post-shock

conditions to evolve independently of the shearing component of this flow field (since the shock is perpen-

dicular to the shearing flow), but as we increase the level of the shear this becomes an increasingly challeng-

ing problem. Though the setup of this test case is somewhat contrived, it is arguably a more relevant
multi-dimensional test case than the idealized tests we normally consider (such as the standard convergent

Noh problems in Section 5.1). In almost all interesting multi-dimensional physical systems there are several

components to the velocity field, not all of which are aligned with the direction of any shocks that are present.

Propagating a shock over a shearing flow is a particularly relevant test case for many astrophysical problems:

consider for instance a rotating gaseous disk forming in a gravitational well. Typically the supporting rotation

curve of such a disk consists of a radially shearing flow, and we must follow the evolution of the angular

momentum as additional material falls into the system and interacts with the disk via shocks. This type of

scenario is typical of problems such as galaxy formation, galactic collisions, and star formation.
In Fig. 3 we compare the result of modeling the shearing Noh problem using the scalar viscosity to a

model using the tensor form. The SPH nodes are initially seeded on a 40 · 100 lattice in the box between

(0,0) and (0.4,1), and we set the magnitude of the shear velocity to v0 = 1 in Eq. (32). We initialize smooth-

ing scales such that there are two nodes per h, and employ the cubic B spline interpolation kernel

W = WP = W3. Periodic boundary conditions are enforced at the x = 0 and x = 0.4 lines, while a reflecting

boundary condition is placed on the y = 0 line. Fig. 3 plots the density and pressure of all nodes in these

simulations vs. y position at time t = 0.6, along with the expected analytic profiles for the planar Noh prob-

lem. Clearly the tensor viscosity results are improved over the scalar version. As we discussed in Section 4
the shearing motion incorrectly contributes some additional deceleration/heating in the tensor viscosity,

but the tensor form does not allow the shear to contribute any spurious acceleration in the y direction, un-

like the scalar viscosity. This is an example of a problem where the shear correction fB (Eq. (11)) for the

standard viscosity simply cannot capture the correct behavior. Since there are both shearing and compres-

sional components to this flow field, the viscosity must be active to capture the shock condition but

inevitably the unphysical shear contribution to the viscosity is also allowed to occur. Even worse, with

fB reducing the scalar viscosity magnitude it is potentially reducing the effectiveness of the viscosity at cap-

turing the shock condition and allowing some interpenetration of the nodes in the y direction. The combi-
nation of the scalar viscosity not being able to restrict acceleration to the y direction and the shear

correction fB reducing the viscosity�s effectiveness against the shock explain the evident disorder that arises

in the profiles of Figs. 3(a) and (b). The tensor viscosity is able to distinguish the compression in the y

direction and operate appropriately in that direction, which in combination with the fact that the

$($ Æ v) limiter allows the viscosity to operate at full strength in the y direction explains how the tensor

simulation is able to do a relatively good job of capturing the Noh solution.

In Fig. 4 we plot results for simulations where we set the magnitude of the shear component to v0 = 5. In

this case the shearing flow is much stronger than the compressional component, making this a very chal-
lenging case. Clearly the scalar viscosity simulation is breaking down badly in this problem, with the shear

induced viscosity component strongly heating the fluid and severely distorting the solution. The scalar vis-

cosity results have also almost completely lost the symmetry of the problem, with the nodes becoming so

mixed that the original rows in y are randomized. The tensor viscosity results are also degraded from what

we see in the v0 = 1 results in Fig. 3, though the planar Noh solution is still recognizable in contrast to the

results using the scalar viscosity. The source of the degradation in this test can be traced to the difficulty

measuring ova/oxb and $($ Æ v) accurately to use in the viscosity formalism.



Fig. 3. Profiles of the mass density and pressure vs. y position for the shearing planar Noh shock problem (with v0 = 1) at t = 0.6. (a) is

the mass density and (b) is the pressure for the simulation using the standard scalar viscosity, while (c) and (d) are the corresponding

results using the tensor viscosity.
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5.3. Statically rotating disk with arbitrary pressure and rotational support

In this test case (and the next) we examine the angular momentum conservation properties of the tensor

viscosity in the context of a gravitationally driven rotational shear. We consider these problems primarily as

a test of the angular momentum conservation of simulations using the tensor viscosity, since (as discussed

in Section 4) total angular momentum conservation is not guaranteed when the tensor viscosity is active.

We also examine how well the analytic radial profiles are maintained, since any spurious activation of
the artificial viscosity should cause deviation from the initial supporting profiles.

In this test case we establish a gaseous disk in rotational and pressure equilibrium with an externally im-

posed fixed gravitational potential. The potential is modeled as a softened point potential
UðrÞ ¼ � GMm

r2 þ r2s
� �1=2 ; ð33Þ
where G is the gravitational constant, M the mass of central gravitating mass, m the mass of the SPH node,

and rs the softening scale. We assume a polytropic equation of state P = fPKq
c, where K is the polytropic



Fig. 4. Profiles of the mass density and pressure vs. y position for the shearing planar Noh shock problem at t = 0.6. In these

simulations we have boosted the magnitude of the shear by choosing v0 = 5, so that the shear component now has a higher peak

velocity than the compressional component. (a) is the mass density and (b) is the pressure for the simulation using the standard scalar

viscosity, while (c) and (d) are the corresponding results using the tensor viscosity.
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constant and c is related to the polytropic index n by c = (n + 1)/n. fP is an arbitrary parameter in the range
fP2[0,1], which we use to select the amount of pressure support. The polytropic constant and radial mass

density profile necessary to establish equilibrium are
K ¼ GM

3rsq
1=2
0

; ð34Þ

qðrÞ ¼ GMðc� 1Þ
Kcðr2 þ r2s Þ

1=2

( )1=ðc�1Þ

; ð35Þ
where q0 is the mass density at r = 0 (assumed to be the origin of the external potential in Eq. (33)). The

supporting orbital velocity is
v2 ¼ ð1� fP Þ2
GMr2

ðr2 þ r2s Þ
3=2

: ð36Þ



J.M. Owen / Journal of Computational Physics 201 (2004) 601–629 615
Since the system is initialized in equilibrium it should statically rotate forever with no radial evolution.

However, the velocity field in Eq. (36) creates a radial shear, so any shear activation of the viscosity will

unphysically cause angular momentum to be transported outward and force the system to deviate from this

radial equilibrium.

Fig. 5 shows the radial profiles of modeling one case of this disk to time t = 10, where we have set G = 1,
M = 1, rs = 1/2, fP = 1/2, q0 = 1, and selected a polytropic index n = 2 so that c = 3/2. These are two-dimen-

sional simulations where we initialize the nodes on rings, each ring consisting of constant mass nodes

spaced azimuthally to match the local radial spacing. The radial spacing of the rings is chosen to conform

to the desired initial density profile. Each of these simulations incorporates roughly 5000 SPH nodes, which

are seeded out to a maximum radius of rmax = 3. The smoothing scales are initialized with two nodes per h,

and we employ the fifth order interpolation kernel so that W = W5 and WP = W3. The analytic solution for

the disk is of course infinite, but since the mass density falls off as q � r�2 the material in the disk rapidly

becomes negligible with increasing radius. Small deviations from the analytic profiles are evident near the
cutoff radius, but overall both simulations do an excellent job of maintaining the static solution for this

system. In this figure we have plotted all the nodes in the simulations vs. radius, so we can directly see
Fig. 5. Radial profiles of the mass density and rotational velocity in the statically rotating disk simulations at t = 10. (a) is the mass

density and (b) the rotational velocity for the simulation using the scalar viscosity, while (c) and (d) are the corresponding results for

the tensor viscosity.
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how well symmetry is being maintained by inspecting these plots and verifying that the results of all the

nodes at a particular radius share the same value for density and rotational velocity.

Fig. 6 plots the time history of the total angular momentum in the two simulations. Measuring the peak

to peak relative error as
Fig. 6
DLz

Lz
¼ maxðLzðtÞÞ �minðLzðtÞÞ

Lzðt ¼ 0Þ ; ð37Þ
we find that DLz/Lz = 2 · 10�7 in the scalar viscosity run, while for the tensor viscosity DLz/Lz = 3 · 10�4.

This is of course something of a null test for the scalar viscosity since that formalism conserves angular

momentum perfectly by construction: the small variation in the scalar viscosity result is due to the accumu-

lation of round-off error and time integration errors in the orbital motion of the gas. Clearly the tensor vis-

cosity simulation has conserved the total angular momentum in this problem very accurately, as we would

expect since it has not caused deviation from the initial equilibrium profile. By time t = 10 the gas at radius
r = 1/2 has completed roughly two rotations. We have pushed these simulations out much further in time,

and eventually the errors in time integrating the orbital motion cause the results to become progressively

noisier about the expected analytic profiles. However, we do not see any net angular momentum transport

or resulting distortion of the disk profiles.

5.4. Gravitationally driven collapse of a rotating fluid

For our final set of test cases we consider an initially pressureless gamma-law gas cloud born in solid
body rotation in an external potential given by Eq. (33), but now rotating too slowly to be supported. This

system rapidly collapses in the gravitational potential, shocks, and forms a hot, dense, rotating disk. In this

case we do not have an analytic solution for what the final collapsed disk should look like, so instead we run

many versions of this problem with increasing resolution to see if the results converge with resolution. This

problem poses a stringent test for the angular momentum evolution, since the angular momentum will be

transported over large ranges in radius and the artificial viscosity will be strongly activated as the material

collapses to form the dense central disk of material. Therefore, it is interesting to look at not only whether

the total angular momentum is conserved, but also how it is transported amongst the mass of the system as
it evolves.
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We begin with a series of two-dimensional simulations. The imposed potential is identical to that used in

the tests presented in Section 5.3 (M = G = 1, rs = 1/2). The gas cloud is initialized as a c = 5/3 gas at con-

stant density q0 = 1 out to a radius of rmax = 10, with an initial solid body rotation such that the rotation at

the outer edge is 20% of the critical support value. The gas disk is initialized as rings of SPH nodes with

constant radial spacing and azimuthal spacing equal to the radial. We perform simulations of this system
at four different resolutions (250, 1000, 4000, and 16,000 SPH nodes) with both the scalar and tensor visc-

osities, for a total of eight simulations. Note that each simulation represents a doubling of the linear res-

olution and a quadrupling of the mass resolution compared to the prior. In each case we initialize the

smoothing scale such that there are two nodes per h, and use the cubic B spline W = WP = W3. The simu-

lations are run to a final time t = 100.

Table 1 shows the total peak to peak error in the z component of the angular momentum in each of the

eight simulations, and Fig. 7 shows the time evolution of the error Lz(t)/Lz(t = 0) � 1. This figure is a bit

busy since there are so many simulations plotted here, but the point is that none of the simulations violate
total angular momentum conservation by more than a few percent: the lowest resolution tensor viscosity

simulations show a total peak to peak error of 5% in the angular momentum, while the highest resolution

simulation shows an error closer to 1%. These results seem acceptable, with the error in the total angular

momentum similar to what is typically seen in the total energy.

Fig. 8 shows the radial profiles for the mass density and circular velocity of the collapsed disk material at

the final time, t = 100 in each simulation. We identify the material in the disks as any SPH node with mass

density qi P 20. In order to generate these profiles, the nodes in the disk are sorted in radius from the cen-

ter of the potential, binned in bins of constant number of nodes, and then the average values and standard
deviations are computed for each bin. Several interesting trends are apparent in these plots. The mass den-

sity profiles in the scalar viscosity runs (Fig. 8(a)) tend to decrease with increasing resolution. This implies

that the angular momentum is increasingly transported away from the disk with decreasing resolution,

thereby allowing mass to settle into a lower orbit. The mass density profile in the 4000 and 16,000 node

scalar viscosity runs seem to have converged. However, the circular velocity profiles in Fig. 8(b) do not

show such a clear trend. The lowest resolution simulation (250 nodes) clearly loses nearly all of its angular

momentum, and therefore shows relatively little rotational motion. The 1000 and 4000 node results dem-

onstrate a trend toward larger rotational motion with increasing resolution, but then the 16,000 node sim-
ulation contradicts this, coming in closer to the 1000 than 4000 node result. All of the rotation curves in the

scalar viscosity runs show a relatively large amount of scatter, evidenced by the large standard deviations

shown in Fig. 8(b). The results with the tensor viscosity show much better agreement as we increase reso-

lution, and much less scatter in the velocity bins. In fact, with the exception of the rotation curve of the

lowest resolution tensor viscosity run, the tensor viscosity profiles are almost insensitive to resolution. How-

ever, the rotational velocities in the runs using the tensor viscosity are much lower than those seen in the

simulations using the scalar viscosity, indicating the disk material winds up with less angular momentum.

Fig. 9 shows the time evolution of the mass and angular momentum transport in the disk. In order to try
and gauge the amount of angular momentum transport occurring during these simulations we use the fol-

lowing prescription: at each time slice we determine which nodes meet the criterion q P 20 for membership

in the disk; we then sum up the amount of angular momentum in this set of nodes at the time in question
Table 1

Peak to peak error in the z component of the total angular momentum DLz/Lz (Eq. (37)) in the two-dimensional collapsing disk

simulations

250 Nodes 1000 Nodes 4000 Nodes 16,000 Nodes

Scalar viscosity 5.6 · 10�6 5.3 · 10�3 2.1 · 10�3 1.3 · 10�4

Tensor viscosity 5.3 · 10�2 5.3 · 10�2 2.2 · 10�2 1.4 · 10�2
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and the amount of angular momentum those nodes were born with at t = 0; the ratio of these total angular

momenta is then what is plotted in Figs. 9(b) and (d). Examining the growth of the mass in the disk it is

clear that the disk has finished assembly by time t = 40. The low resolution (250 and 1000 nodes) scalar

viscosity runs predict too much mass accumulating in the disk, consistent with the idea that these low res-

olution simulations transport too much angular momentum away from collapsing material and thereby al-

low too much mass to accrete onto the disk. The 4000 and 16,000 node scalar viscosity results seem to

converge on the mass in the disk. The final disk mass in the tensor viscosity results does not show as much

dependence on resolution, and is consistent with (though slightly higher than) the high resolution scalar
viscosity result, indicating that roughly 8% of the material in the simulation winds up in the disk.

The evolution of the angular momentum transport in the disk is strikingly different in the tensor viscosity

simulations as compared with the scalar viscosity results. As we increase the resolution the tensor viscosity

runs seem to be resolving a higher and higher peak of transport of angular momentum into the high density

disk material at early times, which then rapidly falls off so that the mass in the disk varies between having

twice and one times the angular momentum it was born with. The simulations using the scalar viscosity

show a very different trend, with angular momentum being transported into the high density material

throughout the formation of the disk, and then slowly being transported away after the disk is assembled.
The scalar viscosity runs also never converge on the evolution of this quantity, and similarly to the trend

noted in the rotation curves in Fig. 8(b) the pattern is not monotonic with increasing resolution – the 16,000

node result falls between the 1000 and 4000 node simulations. By contrast the 1000, 4000, and 16,000 node

tensor viscosity simulations agree fairly well on the evolution of the angular momentum in the disk.

Granted that there is a significant amount of angular momentum transport evident in Figs. 9(b) and (d),

the question of how well these simulation maintain their axisymmetry naturally arises. If the mass distri-

bution were to remain strictly axisymmetric, then the viscosity represents the only mechanism whereby an-

gular momentum can be transported. However, if the rotating disks develop significant non-axisymmetries
(such as a bar mode) then we would expect torquing on this structure to provide a strong mechanism for

angular momentum transport. In order to investigate the degree of axisymmetry in the simulations, we take

a second moment of the mass distribution according to
J ab ¼

P
i
mixai x

b
iP

i
mi

; ð38Þ
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Fig. 8. Radial profiles of the mass density and rotational velocity in the two-dimensional collapsing disk simulations at t = 100, where

the disk is selected as any nodes with mass density q P 20. Nodes are binned radially and the profiles averaged – the errorbars show

the 1r distribution of values in each radial bin. (a) is the mass density and (b) the rotational velocity for the simulations using the scalar

viscosity, while (c) and (d) are the corresponding results using the tensor viscosity.
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where the position xa is with reference to the center of the imposed potential. In the two-dimensional case

we can associate the eigenvalues of Jab (defined here as j1 and j2) as the squares of the axes of an ellipse

(denoted as h1 and h2) fitting the mass distribution: h21 ¼ j1 and h22 ¼ j2 (see the discussion in Appendix
B of [15]). Therefore, we can define a shape factor Fs as the ratio
F s ¼
minðh1; h2Þ
maxðh1; h2Þ

; ð39Þ
which provides a simple metric of how round the mass distribution is. If the system maintains perfect ax-

isymmetry then Fs = 1, while for varying degrees of elongation Fs < 1.

Fig. 10 plots Fs(t) for each of the two-dimensional collapsing disk simulations, both for the total mass in

the system as well as just the mass in the disks. Clearly the disks themselves maintain axisymmetry fairly
well (with Fs(t) � 0.95). The total mass shows a bit more elongation (with the extreme example being

the 250 node scalar viscosity case), but this seems to be primarily due to the granularity of mass being

ejected from the system and traveling to large radii. The long moment arm of this material at large radius

enhances it�s contribution to Jab, but the poor sampling of the angles represented by the small number of
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Fig. 9. Time evolution of the mass and angular momentum ratio in the two-dimensional collapsing disk simulations, where the disk is

selected as any nodes with mass density q P 20. (a) is the mass and (b) the Lz(t)/Lz(t = 0) ratio for the simulations using the scalar

viscosity, while (c) and (d) are the corresponding results using the tensor viscosity.
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nodes that escape to these large distances leads to an artificial apparent elongation of the mass distribution.

Even with this effect all but the lowest resolution scalar viscosity simulation maintain Fs(t) > 0.9 for all

mass throughout the runs, so we do not see evidence that these simulations deviate significantly from

axisymmetry.

Taken as a whole, these comparisons indicate that the tensor viscosity is more active in the formation of
the disk material than the scalar viscosity. It is likely that that shear correction fB effectively suppresses the

scalar viscosity throughout the evolution of the disk and may well over-suppress the viscosity, allowing

some degree of unphysical interpenetration of the SPH nodes. The scatter in the rotational velocity in these

simulations could be a symptom of this. The tensor viscosity should be allowed to exert its full deceleration

in the radial direction, though it also is likely experiencing some degree of shear induced enhancement such

as we see in the strong shear case of the shearing Noh problem in Fig. 4. The tensor viscosity being more

active radially explains why the tensor results predict a more rapid transport of angular momentum into the

disk material at early times, why the rotation curves show much less scatter in the tensor simulations, and
also why the final rotation of the disk is lower in the tensor than the scalar viscosity simulations. Unfor-

tunately we do not know what the correct answer is for this system. The tensor viscosity results seem to

converge to a consistent answer for all the simulations with more than 250 nodes, while the angular
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Fig. 10. Time evolution of the ratio of the minor to major axes for the fitted ellipse to the mass in the two-dimensional collapsing disk

simulations (see Eq. (39)). (a) and (b) show the results for the scalar viscosity simulations, where the ellipse is either fitted to all of the

mass (a) or restricted to just the mass in the disk (b). (c) and (d) are the corresponding results for the simulations with the tensor

viscosity. Note that for the disk measurements in (b) and (d) we bin the curves in time and plot the binned results with errorbars

showing the standard deviation.

J.M. Owen / Journal of Computational Physics 201 (2004) 601–629 621
momentum and velocity information in the scalar viscosity simulations have not converged even in the

16,000 node simulation. This could be an indication that the tensor viscosity results are correct, or that

the tensor viscosity simulations are incorrectly (but consistently) transporting too much angular momen-

tum away from the collapsed disk material.

In our final set of tests we repeat the collapsing cloud angular momentum test in three dimensions. In
this case we initialize an initially spherical cloud in the same potential used in the previous two-dimensional

tests, again with initial constant unit density and solid body rotation about the z-axis equal to 20% of the

support velocity at the outer radius rmax = 10. We exploit the symmetry of this system by establishing a re-

flecting boundary condition on the z = 0 plane and only creating a hemisphere of gas in the z > 0 volume.

We run two different resolutions of this problem using the scalar and tensor viscosity formalisms, for a total

of four simulations. The low-resolution simulations initialize the SPH nodes on a 20 · 20 · 10 lattice above

the z = 0 plane, and then we throw away any nodes with r > rmax = 10 resulting in a total of 2112 nodes. The

high-resolution simulations use the same procedure with a 40 · 40 · 20 lattice, resulting in a total of 16,777
nodes. Note that the higher-resolution simulations double the linear resolution and increase the mass
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resolution by a factor of eight over the low-resolution models. As in the previous two-dimensional tests we

initialize smoothing scales with two nodes per h, and employ the cubic B spline interpolation kernel

W = WP = W3. This system differs from the two-dimensional tests in that now we have gas falling in from

above the plane of rotation, which will interact, shock, and shear with the forming disk at all angles from

the rotational axis.
Table 2 and Fig. 11 test the error in the total angular momentum conservation of Lz, just as we did with

the two-dimensional tests. Because we employ a reflecting boundary condition on the z = 0 plane there is no

point in testing the x and y components of the angular momentum, since these will always be identically

zero. The tensor viscosity simulations conserve the angular momentum in this test to �3% (low-res) and

<1% (high-res), which is consistent with what we see in the two-dimensional models.

Fig. 12 plots the radial profiles of the mass density and fluid circular velocity at the final time t = 100. In

these plots we define the radius as the distance from the z-axis, so each bin represents a cylindrical shell slice

through the system. We now find that all the simulations agree quite well on the mass density profile, even
demonstrating similar amounts of scatter in each radial bin. Likely some of this scatter is due to the fact

that in three dimensions we are averaging over nodes at different z heights above the plane of the disk,

and therefore each radial bin is sampling qualitatively different material (unlike the cleaner test in two di-

mensions, when all of the material is confined to the plane of the disk.) The circular velocity profiles are not

converged for either viscosity, though we again note the scalar viscosity runs at each resolution find a some-

what higher rotational velocity with more scatter in each radial bin as compared with the results using the

tensor viscosity. Comparing this with the results noted in the two-dimensional simulations in Fig. 8 suggests

that the trends in the three-dimensional rotational velocity curves are similar to what we find in two-dimen-
sional, and we simply have not used enough SPH nodes to achieve convergence in the tensor viscosity

results.

Fig. 13 plots the time evolution of the mass of the disk and the angular momentum transport in three

dimensions, calculated just as we did for the two-dimensional simulations in Fig. 9. The scalar viscosity si-

mulations demonstrate a fairly large overshoot in the disk mass at t � 35 (compared with the tensor viscos-

ity simulations), after which time the disk mass converges to roughly the same value in all simulations. It is

possible this initial overshoot in the mass is due to over-suppression of the scalar viscosity by fB, allowing

nodes accreting onto the disk to penetrate too deeply into the body of the disk before they are halted and
pushed back out. Consistent with the rotation curves in Fig. 12(b), the time evolution of the angular mo-

mentum transport does not converge for any of the three-dimensional simulations. There is a clear trend for

the scalar viscosity to transport more angular momentum into the disk as it is assembled, and both form-

alisms show that the amount of angular momentum in the disk increases with increasing resolution. It is

encouraging that once the disk is formed the tensor formalism loses angular momentum from the disk

at the same rate as the shear suppressed scalar viscosity, despite the fact that we do not explicitly suppress

the shear contribution to the tensor viscosity.

Fig. 14 plots the evolution of the shape factor Fs(t) test for axisymmetry, precisely as we did for the two-
dimensional case in Fig. 10. Since we expect axisymmetry about the z-axis we only use the (x,y) components

of the positions in Eq. (39), thereby ignoring the compression in the z direction for these plots. The disk
Table 2

Peak to peak error in the z component of the total angular momentum DLz/Lz (Eq. (37)) in the three-dimensional collapsing disk

simulations

2113 Nodes 16,777 Nodes

Scalar viscosity 1.6 · 10�4 8.4 · 10�5

Tensor viscosity 3.1 · 10�2 8.8 · 10�3
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mass evidently maintains axisymmetry very well with Fs(t) J 0.95 throughout the runs. The total mass

shows more elongation in the two low-res runs, though both high resolution simulations maintain axisym-

metry for the total mass very accurately. Therefore, just as in the two-dimensional collapsing disk tests we

again find that these simulations maintain axisymmetry well throughout the runs, so the angular momen-

tum transport we see in Fig. 12(b) does not seem to be due to non-axisymmetry in the disks.

So what do these collapsing gas cloud simulations tell us about the tensor viscosity and angular momen-

tum? All of the tensor viscosity tests here demonstrate good conservation of the total angular momentum,

which is the necessary lowest bar we must clear in order for the results to be believable. This argues that the
fact that the tensor viscosity is not guaranteed to conserve angular momentum should not rule out the ten-

sor viscosity as a useful tool. Additionally, the fact that once the disk has formed the tensor viscosity does

not show a greater rate of loss in angular momentum from the disk than the shear corrected scalar viscosity
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is also a very good sign. Previous investigators such as Navarro and Steinmetz [12] have verified that the

shear corrected scalar viscosity formalism does an adequate job of maintaining the angular momentum of a

rotating disk once it is formed, whereas without the use of the shear correction the scalar viscosity fails such

tests badly. The fact that the tensor viscosity is able to match the angular momentum transport loss rate of

the shear corrected scalar viscosity for the rotating disk after it is formed without resorting to an explicit
shear correction is therefore quite impressive. However, there are yet unanswered questions about how both

of these viscosities are affecting the local transport of angular momentum during the assembly of a rotating

structure such as this disk problem. The angular momentum and rotational velocity of the simulations em-

ploying the scalar viscosity never converge, whereas while the simulations using the tensor viscosity do con-

verge (at least in the two-dimensional examples shown here), they characteristically transport less angular

momentum into the disk than the corresponding scalar viscosity runs and therefore have a lower rotational
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Fig. 14. Time evolution of the shape parameter (Eq. (39)) of the mass distribution in the three-dimensional collapsing disk simulations.

(a) shows the results using all the mass in the simulations, while (b) shows the results in the various simulations for the mass in the disk

only.
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velocity. Despite the convergence of the tensor viscosity runs, ultimately it is not yet clear which method-

ology is doing a better job of modeling the angular momentum transport in this system.

5.5. Computational expense of the tensor viscosity

An obvious concern with the implementation of the tensor viscosity is the computational expense it will

incur relative to the simpler scalar viscosity. The new tensor formalism laid out in Section 4 clearly involves

much more work than the scalar prescription described in Section 3, and since the tensor viscosity is a pair-

wise operation much of this work is required in the innermost loops of the derivative evaluation in an SPH

scheme. Additionally, in a straightforward implementation we require an extra loop over the SPH nodes to

evaluate the background gradient of the velocity ðova=oxbÞi before the standard fluid derivative evaluations

can begin. This implies an extra pass through the whole neighbor node selection process, which depending

on the implementation can incur a large overhead. These sorts of details make comparing the expense of a
given technique difficult for different implementations. The final bottom line cost of a new algorithm such

as this depends strongly on how the time spent evaluating the viscosity compares to the other costs in the

code: details of how SPH node neighbor selections are done, the exact choice of time integration scheme,

etc. will all have a strong influences on the total run-time. Therefore, we present two different measures of

the relative expense of the tensor viscosity in our current implementation (as compared with the scalar vis-

cosity): the ratio of the time spent evaluating just the viscous component of the fluid derivatives, and the

total run-time ratio. Table 3 summarizes these comparisons for the two-dimensional and three-dimensional

collapsing disk problems shown in Section 5.4.
In the two-dimensional case we see that calculating the viscosity forces alone is about 1.7 times more

expensive with the tensor viscosity, while the total run-time increases by a factor of 2.5. The reason the total

run-time increases more than the derivative penalty alone is the extra pass over the nodes evaluating

ðova=oxbÞi. In the three-dimensional case we see that the individual expense of calculating the viscous accel-

eration increases by almost a factor of 8, while the total run-time increases by a factor of 4. The percentage

of time spent in various parts of the code changes going from two to three dimensions, which is why in three

dimensions the overall run-time does not increase by as much as the viscosity evaluation itself would sug-

gest. It is also likely that much of the reason for the increase in the expense of evaluating the tensor viscosity
term in three dimensions vs. two dimensions is due to the fact that in two dimensions we analytically solve

for the rotational transformation RS which diagonalizes the symmetric component of the velocity gradient

(see Eq. (21)), whereas in three dimensions we are using the iterative Jacobi scheme to diagonalize this term

(as described in Appendix C.) Since this diagonalization is occurring in the innermost derivative loop for

every interacting pair of nodes, it would probably pay to similarly solve this problem analytically in the

three-dimensional case. In a similar vein it is also worth emphasizing that the performance numbers here

represent a worst case scenario, since the tensor viscosity implementation used here was written with flex-

ibility in mind in order to facilitate experimentation with different forms for the viscosity. There has not yet
been an effort to optimize this implementation (with improvements like avoiding the pair-wise Jacobi solve

in three dimensions), so presumably this performance can be improved. Ultimately of course the tensor
Table 3

The tensor viscosity/scalar viscosity run-time ratios for the collapsing disk simulations in Section 5.4

Total Viscosity only

Two-dimensional 2.5 1.7

Three-dimensional 3.9 7.8

The first column shows the ratio of the total time taken by the tensor viscosity simulations over the scalar, while the second shows the

ratio of time spent just evaluating the viscous forces in the fluid derivative calculations.
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viscosity will always be more expensive than the simpler scalar form, and it is up to the numerical practi-

tioner to decide if the gains in the solution obtained are worth the expense.
6. Summary and discussion

We have developed a tensor artificial viscosity for use with SPH, which reduces to the well-known Mon-

aghan and Gingold [10] form in one dimension. We have also derived a directional limiter designed to limit

the acceleration due to the artificial viscosity to the direction most directly aligned with any local shocks.

This limiter is well suited for use with a tensor viscosity because the tensor formalism allows for direction-

ality in the acceleration, which can then be effectively masked or allowed by the limiter. Our motivation in
this work has been to better address multi-dimensional problems such as the shearing shock problem in

Section 5.2. We believe these sorts of truly multi-dimensional problems are more representative of the phys-

ical systems which we use tools such as SPH to study than the traditional one-dimensional test cases we

typically tune hydrodynamic algorithms against. The shearing shock problem is manifestly two-dimension-

al, as opposed to the more typically utilized one-dimensional test problems such as the standard Noh shock

problem. Although the cylindrically and spherically convergent Noh problems are conceptually two- and

three-dimensional tests, in fact these are really one-dimensional tests in that they can be entirely specified

as one-dimensional problems in the appropriate coordinate system. Unfortunately most of the tests we use
to validate our numerical hydrodynamic methods are intrinsically one-dimensional in this sense, and there-

fore do not necessarily prove that a given technique is truly appropriate for multi-dimensional physics.

Such one-dimensional tests are a necessary first bar any hydrodynamic technique must pass, but we need

more multi-dimensional tests if we are truly to trust the application of these tools for the study of complex

multi-dimensional fluid flows. In this sense we believe the shearing shock problem presented here is as im-

portant as the tensor viscosity itself.

The question of angular momentum conservation is one of the most important issues with a tensor ar-

tificial viscosity such as this. Standard SPH utilizing one of the typical scalar viscosity formalisms is some-
what unique among numerical hydrodynamic methods in that it simultaneously conserves both linear and

angular momentum, a property we are loathe to surrender. However, the advantages of the tensor viscosity

formalism in being able to discriminate different velocity signals in complex flows (and align the local ac-

celeration appropriately) make it often more appropriate for multi-dimensional problems, so long as the

angular momentum conservation is not grievously violated. We have investigated the angular momentum

conservation of the tensor viscosity extensively in this paper, and found that even in the most challenging

rotational problems total angular momentum is always conserved to a few percent. This places the conser-

vation of total angular momentum on par with typical conservation of total energy in such simulations, so
we believe the tensor viscosity passes the angular momentum test.

However, clearly a great deal of work clearly remains to be done on angular momentum transport issues

in SPH simulations. Although we demonstrate here that the tensor viscosity conserves total angular mo-

mentum acceptably, there are still many questions about the transport of angular momentum in both

the scalar and tensor viscosity formalisms. It is worrisome that in the two-dimensional scalar viscosity si-

mulations of the collapsing disk in Section 5.4 neither the rotation curves nor the angular momentum trans-

port for the disk converge even with very highly resolved simulations. Although the tensor viscosity

simulations do converge, they demonstrate a much lower rotation rate than the scalar viscosity simulations,
the angular momentum history looks quite different, and ultimately we do not know that either case is cor-

rect. This sort of problem is very relevant for physical systems investigators are trying to model today, such

as the formation of disk galaxies in a cosmological context. Cosmological simulations have long been suc-

cessful at creating simulated galaxy populations with about the expected mass distribution, but almost in-

variably the final population of simulated disk galaxies lose far too much of their angular momentum
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during the formation process so that the final disk is too centrally concentrated and rotating too slowly.

This error can be quite severe, with angular momentum errors by as much as one or two orders of magni-

tude [4,11–13]. A variety of explanations for this problem have been proposed supposing that the problem

is related to missing physics in the models, but the lack of convergence we see in the idealized collapsing

rotational problems here suggests that at least some of the error could be numerical in origin. This problem
is one example of a situation wherein correctly determining the local transport of angular momentum is

more relevant than achieving perfect global conservation.

We would also like to point out that the prescription for defining the tensor viscosity in Section 4 consists

of a number of distinct pieces that are not necessarily unique, and therefore there is much room to exper-

iment. The most obvious step that can be changed is the method for determining ova=oxb (as well as

rðr � vÞ for the limiter), which is part of why we separate out those sections into the appendices. A simple

choice that can be made is to determine these quantities using the SPH formalism:

ova=oxb ¼ hova=oxbi ¼ �q�1
i

P
jmjðvai � vaj ÞoW ij=oxb. We have experimented with this choice and found

the tensor viscosity results improve for the convergent Noh problems (in particular the spherical result is

less noisy in the post-shock regime) as well as the shearing Noh problem (the post shock solution in the

v0 = 5 case in Fig. 4 shows less of a dip in the mass density curve), which is probably all related to having

less noise in the direction of the gradient term. However, we also found that using the SPH definition for

ova=oxb results in catastrophic angular momentum conservation errors in the collapsing disk problem in

Section 5.4, with errors of order DLz/Lz�50%. We believe this error arises because the SPH estimate of

the gradient fails in a systematic way for systems with very large gradients in the mass density/SPH node

distribution. This is related to the boundary problem in SPH, where the SPH definition for interpolated
field values and gradients characteristically falls off as one approaches a material boundary where the

SPH nodes stop. The simple pair-wise estimate for ova=oxb in Appendix A is specifically designed to be ro-

bust in such boundary situations, and results in the much improved angular momentum properties we pre-

sent in this paper. Nonetheless, there is still significant room to experiment with this and other choices in

the recipe defining the tensor viscosity.

In closing, all the work presented here has been performed in the context of an open source meshless

hydrodynamics project, and instructions for obtaining the set of code used in this paper as well as the test

setups for all the problems presented here are available at http://spheral.sf.net/TensorQ.html. We invite an-
yone interested to download this software and try out reproducing either our results or try constructing

additional test problems of your own.
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Appendix A. Estimating ¶va=¶xb

It is critical that the method used to estimate ova=oxb for use with the tensor viscosity be robust. After

experimenting with several options, we settled on a low order pair-wise summed definition given by
ova
oxb

� �
i
¼
P

j
mj

qj
W ijðRca

r Þij
ðRcv

r Þijvv

jrij j dw1
� �

ðRwb
r ÞijP

j

mj

qj
W ijjðRca

r Þijð1
cdw1ÞðRwb

r Þijj;
ðA:1Þ

http://spheral.sf.net/TensorQ.html
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where 1a is a vector with unity for each element, dab is the Kronecker delta function, and ðRca
r Þij is the ro-

tational transformation which rotates to the frame where the x 0 axis is aligned with the xaji vector. This ex-
pression is simply a summed average of the individual pair-wise estimates for the gradient between each

node pair defined in Eq. (19). Eq. (A.1) deviates from a standard SPH estimate in that we explicitly nor-

malize each element by the total weighting which has gone into the pair-wise contributions to that element.
This is necessary because each pair-wise contribution only increments the first column of the gradient ten-

sor in the rotated ij frame, and therefore the sum of the total weighting applied to each element in the full

tensor is unique and does not sum to unity. This explicit normalization also helps maintain accuracy in the

gradient estimate near edges and over strong density gradients.
Appendix B. Estimating $ð$ � vÞ

We also use a low order (but robust) pair-wise formalism to estimate the second derivative $($ Æ v) = o2

vb/(oxaoxb) as
o
2vb

oxaoxb

� �
i

¼

P
j

mj

qj

oW ij

oxa
vcijr

c
ij

jrij j2þ�2h2iP
j

mj

qj
W ij;

ðB:1Þ
where � is a small number to prevent division by zero errors. Just as in Eq. (A.1) we explicitly renormalize

this expression by
P

jmj=qjW ij in order to improve the accuracy of the result near strong density gradients

and edges.
Appendix C. Rotational transformations

C.1. Rab
r

In Section 4 we discuss the rotational transformation Rab
r , which aligns the rotated x 0 axis with the

xaji ¼ xaj � xai vector between nodes i and j. In terms of the unit vector x̂aji ¼ xaji=ðx
b
jix

b
jiÞ

1=2
;Rab

r in two dimen-

sions is
Rr ¼
x̂ji ŷji
�ŷji x̂ji

 !
; ðC:1Þ
while in three dimensions
Rr ¼

x̂ji ŷji ẑji

�ŷji=ðx̂2ji þ ŷ2jiÞ
1=2 x̂ji=ðx̂2ji þ ŷ2jiÞ

1=2
0

�x̂jiẑji=ðx̂2ji þ ŷ2jiÞ
1=2 �ŷjiẑji=ðx̂2ji þ ŷ2jiÞ

1=2 ðx̂2ji þ ŷ2jiÞ
1=2

0
BB@

1
CCA: ðC:2Þ
C.2. Rab
S

Rab
S is the rotational transformation which diagonalizes the symmetric component of the velocity gradi-

ent (Eq. (21)). In two dimensions we define the rotation angle
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hS ¼
1

2
tan�1

S21
ij

S11
ij þ S22

ij

; ðC:3Þ
and the rotational transformation is
RS ¼
cos hS sin hS
� sin hS cos hS

� �
: ðC:4Þ
In three dimensions we could in principle similarly determine RS analytically, but in practice we simply

use the Jacobi iterative diagonalization scheme to numerically determine RS.
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